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Abstract. It is shown that two special properties of Cr are needed to explain its
antiferromagnetism. One special property is the well known sensitivity to antiferromagnetic
spin-density waves due to nesting of the Fermi surface. A second new special property comes
from first-principles total-energy calculations on bcc Cr, which show that, although the lowest
energy state is nonmagnetic, a small expansion of the lattice brings a second-order transition into
a type-I antiferromagnetic phase with rapidly rising local moments. The combined properties
provide a mechanism for stabilization of the unusual antiferromagnetic ground state, since a
spin-density wave which modulates the moments of the antiferromagnetic phase can be used to
compensate the strain energy of the lattice expansion. This combined mechanism also explains
various properties of Cr, such as the great sensitivity of the antiferromagnetism to pressure, that
are otherwise puzzling.

1. Introduction

It has long been known from experiment that Cr has an unusual ground-state magnetic
structure, namely an antiferromagnetic (AF) spin-density wave (SDW) in which the local
momentm on each Cr atom alternates direction in successive (001) planes and is sinusoidally
modulated in amplitude over about 20 bcc lattice constants. The history is discussed in detail
by Fawcett [1], whose review will be the reference for experimental results. The existence
of an SDW is explained theoretically [2, 3] by a special property of the Cr Fermi surface,
namely a nesting property. Translation between two parts of the Fermi surface by either of
two nesting vectors ink-space with wave numbers equally above and below the reciprocal
lattice vector in the [001] direction brings large areas of each part of the surface to near
coincidence. Hence there is a special sensitivity to the potentials which have the wave
numbers of the nesting vectors and are produced by modulating the spin density. Such
potentials can produce sizable interactions between the nesting parts of the Fermi surface
and thereby lower the energy.

This paper shows that the SDW is a weak perturbation of an AF state of bcc Cr, and
the paper is mainly a study of the magnetic structure of bcc Cr. By bcc Cr is meant that
both the atomic and magnetic unit cells are bcc. In AF states the bcc cell has two atoms
with opposite magnetic moments. When the SDW is present the magnetic unit cell is much
larger than a bcc cell, although the atomic unit cell remains closely bcc, and the crystal will
be called AF Cr or SDW Cr, but not bcc Cr.

This special property of sensitivity to particular SDWs does not prove that a SDW must
be present in the AF phase in Cr or that Cr cannot have an ordinary type-I AF phase. Both
these features of Cr are consequences of combining the special sensitivity to SDWs with
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a second special property of Cr found by application of first-principles total-energy theory.
This second special property is that although bcc Cr in equilibrium has a nonmagnetic (NM)
energy minimum in whichm vanishes and the AF phase does not exist, a small expansion
of the lattice produces a second-order transition into a type-I AF phase. This AF phase
lies below the NM phase in energy at all volumes per atom greater than the transition
volume. The type-I AF phase, also called a commensurate AF phase, has up and down
spins alternating on (001) planes with moments of constant magnitude.

The mechanism that produces the AF ground state of Cr uses both these special
properties of bcc Cr: the lattice expands to where the type-I AF phase has a suitably
largem value and thatm is then modulated in an SDW of appropriate wavelength. The
SDW uses the nesting property to lower the energy so much that the strain energy of lattice
expansion is more than compensated and thus a second energy minimum is produced which
is lower than the NM energy minimum; it will be called the SDW minimum. Hence this
SDW minimum becomes the AF ground state of Cr, but it is an unusual AF state with a long
magnetic unit cell. In this paper the strain energy of the required expansion is estimated
and that strain energy is shown to be in reasonable agreement with a recent calculation of
the energy decrease in Cr produced by an SDW [4].

This mechanism also explains a number of observations that are puzzling without it,
e.g., that Mo with nesting properties like Cr does not have an AF ground state, that at the
Néel temperature the volume decreases andm vanishes, that Cr has a negative coefficient of
thermal expansion at low temperatures, that pressure strongly reduces the Néel temperature,
that addition of Mn can produce a transition to the type-I AF phase, but addition of V
produces a transition to the NM phase, and that the transition to the AF phase is feeble.

The calculations solve the Kohn–Sham (KS) equations [5] in the local spin-density
approximation (LSDA), a formulation which has been quite successful in explaining
magnetic phases of many metallic elements and compounds. The application to Cr requires
special procedures for finding and resolving close-lying magnetic phases in the small volume
range of Cr in which all the magnetic behaviour of Cr occurs. The energy scale of the
NM and AF phases is shown to be much smaller than was found in previous total-energy
calculations, which consequently gave strain energies too large for compensation by an
SDW.

Section 2 discusses computational details, the reliability of the results and the special
procedures for handling magnetic phases. Section 3 gives results for the energies and
moments of the NM and AF phases and compares the results to other calculations. The
discrepancy in energy scales is discussed further in sections 3.2 and 5. Section 4 gives a
general plausible argument for the mechanism and discusses the other observations explained
by the mechanism. Section 5 has concluding remarks about the success of this combination
mechanism and the significance of this first-principles explanation of antiferromagnetism
in Cr.

2. Computational details

The electronic structure of Cr is found from self-consistent solutions of the spin-polarized
KS equations with the augmented spherical-wave (ASW) method [6]. The KS equations
use the LSDA with the von Barth–Hedin exchange-correlation potential [7] as modified by
Janak [8]. The ASW method is a fast and accurate first-principles method of solving the
KS equations designed for crystals with atoms in cubic or near-cubic environments. By
first-principles method we mean one that has no empirical parameters in the Hamiltonian.
The calculation uses the pure KS equations without relativistic or nonlocal corrections. Such
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calculations have obtained good agreement with experiment for 3d and 4d elements, but the
5d elements require relativistic corrections (results obtained with the ASW for 3d and 4d
elements in both the bcc and fcc structures for each element have been collected in a review
[9]): lattice constants agreed with experiment within 2% [9]; bulk moduli of NM 3d and 4d
elements and also Cr and Mn agreed to within 10%, but errors for Fe, Co and Ni are 20 to
25% [9, 10]; magnetic moments of ferromagnetic (FM) Fe, Co, Ni agreed within 3% [9, 11].
The practical reason for omitting the corrections is to obtain agreement with experiment.
The relativistic corrections decrease the lattice constants, which the LSDA already makes
too small, and the bulk moduli are made much too large. The various nonlocal corrections
overemphasize magnetism [12, 13], an important consideration for the theory of Cr. Pure
KS equations without corrections have also had notable success in establishing the magnetic
ground state of FeRh as a type-II AF phase [14] and in finding AF ground states in several
binary Fe compounds in CsCl structure [15].

Determination of the magnetic structure of Cr presents special difficulties. At a given
volume a weak AF phase very near a NM phase is sought, hence the electron distributions
of two close-lying energy minima must be resolved. The two phases and the two minima
actually merge at the transition volume of the second-order transition from the NM phase to
the AF phase. An important aid to resolving magnetic states is to carry out the calculation
with constraints that fix the total spin momentM of all the atoms in the unit cell, as well
as the volume. This procedure is also called the fixed-spin-moment procedure. The total
energy per atomE is found at each volume per atomV as a function ofM. The value of
M in the unit cell combined with the atomic numbersZ of the atoms in the unit cell fix the
number of up-spin and down-spin electrons. Thus the constraint of givenM on the electron
distribution is easily added to the constraints of givenZ values, given structure (bcc) and
given volume by keeping separate densities of states for up-spin and down-spin electrons
in the unit cell during the iterations to self-consistency. The minima ofE(M) at a givenV
correspond to the equilibrium magnetic phases at that volume [9, 11]. A phase atM = 0 is
then easily separated from a ferromagnetic (FM) phase, which occurs at finiteM.

However the separation of NM from FM phases is easier than the separation of NM
from AF phases, because both the NM and AF phases haveM = 0 at the givenV . This
latter separation is achieved by careful preparation of the initial distribution of charge and
spin. Thus to find the AF phase in Cr the first step is to find the solution at theM value
of the FM minimum. Then the up- and down-spin distributions on half the atoms in the
unit cell are interchanged to create an initial AF distribution, which is then iterated in small
steps to self-consistency. After finding the solution atM = 0 small changes inM around
M = 0 are made in order to determine whetherE(0) is a minimum. To reduce the number
of iterations and make them converge more smoothly each change ofM is started with the
charge and spin distribution of the previousM. If there is a minimum, and if the local
momentsm are finite atM = 0, then the AF phase has been found at the givenV . The NM
phase is found by using an initial distribution which has moments with the same magnitude
and direction on all atoms.

This procedure for finding the AF phase did not succeed in getting close to the phase
transition when the two-atom CsCl cell was used [16]. During iteration at volumes greater
than the transition volume the solution in the two-atom unit cell would jump into the NM
phase long before the interesting range of volume and magnetic moment per atom in the
bcc Cr ground state near the transition was reached. Better results were obtained with a
four-atom cell which consisted of a stack of two adjacent two-atom bcc cells along [001];
this cell was needed to find the AF phases of binary Fe compounds [15]. The larger barrier
between the NM and AF solutions in the four-atom cell seems to reduce the computational
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fluctuations in the iteration process. Those fluctuations can bring the charge distribution into
a range which converges to the NM minimum. The first calculations with the four-atom cell
[17] allowed only three atoms to have independent moments. This calculation did approach
much closer to the transition volume than the calculation with the two-atom cell [16], but
was only able to show that the transition from the NM phase to the AF phase occurred near
the NM minimum. In the present paper, by allowing the moments of all four atoms to vary
freely, subject only to the constraint on their sum, the calculation was able to show clearly
that the transition volume is larger than the NM minimum.

Figure 1 illustratesE(M) curves at tworWS values which straddle the value ofrWS at
which m of the AF phase attains the average observed magnitude in the SDW. The figure
shows that two separate solutions can be found at eachrWS , each with a minimum atM = 0.
One solution is NM withm = 0 at the minimum and one solution is AF with them values
plotted in figure 2. Figure 1 shows points with smooth variations of energy on the scale
of tenths of a mRyd/atom, shows that the AF phase is lower in energy than the NM phase
and that the energy difference rapidly gets smaller asrWS decreases toward the transition
value rt at which the two phases merge. TheEAF (rWS), m(rWS), andENM(rWS) curves
shown in figures 2–4 are then obtained from the minima in theE(M) curves, whererWS is
the Wigner–Seitz or equivalent-sphere radius of the atom.

Figure 1. EnergyE − E0 in mRyd/atom atrWS = 2.66 au andrWS = 2.67 au along the AF
solution branches (lower curves, marked AF), and NM solution branches (upper curves, marked
NM) of the Kohn–Sham equations as functions of total momentM in Bohr magnetons in the
four-atom unit cell. The phases correspond to the minima. The reference energyE0 is the
minimum energy of the NM phase atrWS = 2.645 au. AtM = 0 the local momentm vanishes
in the NM solutions, but is finite in the AF solutions.

The properties ofE(M) curves are discussed at length in several papers [9, 11]. An
interesting feature of suchE(M) curves is that the NM and AF phases corresponding to the
minima are on separate solution branches of the KS equations, so that at volumes greater
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Figure 2. The total band energy of bcc Cr in the nonmagnetic stateENM and the
antiferromagnetic stateEAF in mRyd/atom as a function of the Wigner–Seitz radiusrWS
in au (scale left) and the local magnetic momentm in Bohr magnetons per atom in the
antiferromagnetic state (scale right). The reference energyE0 is the same as in figure 1.
Calculated points are shown.

than the volume of the second-order transition both phases persist, as shown in figure 2.
However the NM and FM phases are on the same solution branch, hence a second-order
transition from NM to FM converts the phase completely, as in bcc Fe or fcc Ni [9]. Even
a first-order transition from NM to FM phase produces a two-phase range in which two
minima are present for a small range ofrWS before one minimum and the corresponding
phase is lost, as is the case for Cr [16]. The first-order NM to FM transition occurs at a
lattice constant 17% higher than the NM to AF transition and the initial energy of the FM
phase is 130 mRyd/atom higher in energy than the initial energy of the AF phase.

3. Results

3.1. Description of present results

Figure 2 shows the band energies in the NM and AF phases and the local magnetic moment
m(rWS) in the AF phase, all obtained from the energy minima ofE(M) curves like those in
figure 1 at eachrWS used in the four-atom cell calculations. The range ofrWS includes the
NM energy minimum atrWS = rm and allows the band energies to reach 10 mRyd/atom
above the minimum andm to reach 2µB/atom. The second-order transition atrWS = rt
from the NM to the AF phase occurs at 0.3% expansion fromrm. Both phases continue to
exist abovert , as noted at the end of section 2.

Figure 3 plotsm2 againstrWS near rt to show the linear dependence expected of a
mean-field description of a second-order transition [18]. Extrapolation of the line tom = 0
locates the transition accurately atrt = 2.654 au.



6546 P M Marcus et al

Figure 3. The square of the local moment in the AF state of Crm2 vs the Wigner–Seitz radius
rWS in a range close to the nonmagnetic to antiferromagnetic phase transition. Them2 values
are fitted to a straight line, which is extrapolated to give the value ofrWS at the transition
rt = 2.654 au.

Figure 4 expands the energy scale of figure 2 by a factor of ten and the length scale by a
factor of five to exhibit clearly the NM minimum atrm = 2.645 au and the start ofEAF (rWS)
tangent toENM(rWS) at rt = 2.654 au. Despite some scatter of about±0.05 mRyd/atom
in theEAF values nearrt , the curveEAF (rWS) is well determined by the point of tangency
and the points atrWS = 2.67 au and above. At volumes at which it exists, the AF band
curve is always the ground state of bcc Cr.

In the measured SDW the mean value ofm is about 0.43 µB , which corresponds in
figure 2 torWS = 2.664 au. AtrWS = 2.664 figure 4 shows that the energy ofEAF is about
0.18 mRyd/atom above the minimum energyENM(rm). This strain energy from the volume
expansion can be compared with the recent result by Hirai [4] that an SDW optimized with
respect to wave number and moment amplitude lowers the energy of the NM phase by
0.11 mRyd/atom. Hirai’s calculation is not optimized with respect to the volume per atom
or to the strain wave accompanying the SDW, which would lower the energy further.

Figure 5 shows the effects onrt andrm of changing the electron density in Cr by varying
the atomic numberZ around 24. These calculations simulate the effect of adding impurities
such as Mn (Z = 25) and V (Z = 23) without the effects of the disordered ion cores.
Figure 5 shows that atZ = 24.013, which corresponds to 1.3% Mn,rt = rm and a type-I
or commensurate AF phase now exists for the alloy. Hence asZ increases above 24.013
the minimum of the NM phase now liesabovethe minimum of the AF phase, which will
compete for the ground state with the SDW minimum. At 1.8% Mn a transition from the
SDW minimum to the commensurate AF phase is in fact observed [1]. Figure 5 shows that
m reaches 0.5 µB , the measured value ofm in the commensurate AF phase, at the minimum
of the energy curve at about 1.7% Mn. Figure 5 also indicates that forZ < 24 the transition
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Figure 4. Total band energiesENM(rWS) andEAF (rWS) for Cr on the expandedrWS scale of
figure 2 that covers the minimum ofENM at rWS = 2.645 au (the reference energy) up to an
rWS at whichm is above the value in the measured SDW. TheEAF curve is made tangent to
ENM at rt = 2.654 au, the value ofrWS at which the phase transition to the AF phase takes
place. The points at which calculations have been made are shown.

to the AF phase occurs at largerrWS than atZ = 24, which would make the SDW less
effective, since the strain energy of volume expansion is greater. Hence a transition to the
NM phase is expected at some concentration of V and is in fact observed at 4% V [1].

3.2. Comparison with previous papers

The results found here may be usefully compared with the few previous calculations that
found the total energy in the NM and AF phases. Kübler [19] also used the (then new)
ASW method to find the total energy of the NM, AF and FM phases of bcc Cr as functions
of volume. K̈ubler found the NM phase to have a minimum energy at bcc lattice constant
a = 2.854 Å (rWS = rm = 2.655 au) to be compared with the value found here of
rm = 2.645 au. K̈ubler’s value includes a zero-point correction. Kübler did not find a FM
phase in therWS range studied, which agrees with our result that the FM phase requires
a 17% expansion of the lattice fromrm to exist [16]. However in contrast to our results
Kübler found the AF phase to have a lower energy than the NM phase for bcc Cr and a
finite m = 0.59µB at the minimum. K̈ubler did not use the constrained moment procedure
or a four-atom cell and used a very different procedure from the one used here for the initial
distribution and calculation of the AF phase. His procedure is not described in detail and
his result for the AF phase is also contradicted by the later work to be described now.

Chen, Singh and Krakauer (CSK) [20] used the general potential LAPW method with
the LSDA. They included relativistic corrections and used the two-atom (CsCl) cell to find
EAF (rWS) of bcc Cr for the AF phase. CSK also found no FM phase, but foundEAF (rWS)

for three different exchange–correlation potentials in the LSDA, including the von Barth–
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Figure 5. The variation with electron number per atomZ of: (a) rt (calculated points♦), the
value of rWS at the transition from the NM to the AF phase; (b) the value ofrWS whenm
reaches 0.5 µB (calculated points�); (c) the value ofrWS at the minimum energy of the NM
phase up toZ = 24.013 and then of the AF phase forZ > 24.013 (calculated points+).

Hedin form used here, which is the only one that gave reasonable results. CSK do not
showENM(rWS) separately along withEAF (rWS) and only one curveE(rWS) is shown.
Hence the transition volume is not clearly identified, but at the minimum of the one curve
a = 2.798 Å (rWS = 2.60 au) CSK findm = 0 in agreement with the present calculation
and disagreement with K̈ubler. A value ofm of 0.70 µB is found at the experimental
lattice constanta = 2.879 Å (rWS = 2.68 au), which is 3% above the value ofa at the
minimum. More relevant would be thea value at whichm = 0.4 µB , which might be
interpreted as the result of a lattice expansion like the one proposed here. However there
is a serious discrepancy between their energy scale and ours; namely their energy increase
from the NM minimum to the experimental lattice constant is 11 mRyd/atom, while we
find 0.9 mRyd/atom. This same discrepancy appears in a later paper which repeats this Cr
calculation [12], which will now be discussed.

Singh and Ashkenazi (SA) [12] repeat the LSDA calculation on bcc Cr along with two
nonlocal corrections to the KS equations, all with the same von Barth–Hedin exchange–
correlation. They conclude that the nonlocal corrections give magnetic effects that are too
large, hence we will only consider their LSDA calculation. Again as for CSK the AF phase
of bcc Cr is found to start above the NM minimum, hence the ground state is NM. Again
the transition volume to the AF phase is not accurately located since their lowest value of
m is 0.38µB in their figure 4 (the ordinate is mislabelledE). This value ofm corresponds
to our experience with the two-atom cell [16] mentioned above, when we also could not
approach close tort , the rWS value of the transition into the AF phase. But just as for
CSK, there is a major difference in the energy scale from the calculation made here. SA
find EAF at m = 0.38 µB to be 4 mRyd/atom above the NM minimum, while we find
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0.2 mRyd/atom. Since the SDW lowers energies by tenths of a mRyd/atom, the large strain
energy found by SA could not be compensated by an SDW, a conclusion which they draw.
However our much smaller energy differences are in the right range for such compensation.

Our previous paper on Cr with the four-atom cell, but with only three magnetic moments
in the cell [17], agrees with the results here as to the general course ofENM(rWS), EAF (rWS)
andm(rWS), but is inadequate in two respects. The behaviour ofEAF (rWS) was not found
accurately in the critical rangerWS = rm = 2.645 au torWS = 2.664 au (the expanded
lattice) so that the conclusion thatrt > rm could not be drawn. Hence the paper failed to
recognize that an expansion of the lattice was essential to allow the SDW to form, as is
concluded here.

4. Discussion

Although the pure KS equations used here provide a consistent and reasonable first-principles
description of the magnetic behaviour of Cr and other metals, quantitative modifications
can be expected when reliable nonlocal corrections are available. However a persuasive
qualitative argument can be given for the proposed mechanism for antiferromagnetism in
Cr that should remain valid. Namely we can expect that asrWS expands fromrm the NM
minimum,ENM(rWS), is initially flat and the strain energy grows slowly. However above
the transition pointrt , whererWS has expanded by 0.3% to 2.654 au,m grows rapidly and
so the size of the energy will decrease due to an SDW. Hence the decrease can be expected
to overtake the slow increase of energy and stabilize an AF ground state. However the
decrease is measured in tenths of a mRyd/atom, so that whenrWS exceeds say 2.68 au
(1.3% aboverm) the strain energy exceeds 1 mRyd/atom (see figure 4) and the SDW surely
can no longer compensate it, even thoughm is still rising. The estimate in section 2 is that
a 0.7% increase fromrm = 2.645 au torWS = 2.664 au is where the rising strain energy
forces the lattice to stop expanding.

Section 3.1 showed that because of the strong effects of electron density on the
volume of the transition from the NM to the AF phase, the mechanism proposed here
for antiferromagnetism in Cr explains the effects of adding Mn or V to Cr. Several other
observations can also be explained by the same mechanism, i.e.:

(1) Although Mo has a Fermi surface with nesting properties like Cr [1, 21], it fails to
have an AF ground state. This failure is readily understandable from the band structure of
bcc Mo [9, 22], which shows thatrt for Mo is 17% aboverm and the strain energy atrt is
60 mRyd/atom. However Cr, as suggested by Overhauser in 1962 [3], has ‘a fortuitously
favorable band configuration’.

(2) On going up through the Ńeel temperatureTN Cr has a first-order transition into the
disordered state with a 0.8%decreasein volume and the moment on the individual Cr atoms
vanishes [1]. This behaviour is just what would be expected when temperature excitation
breaks up the SDW leaving a strained expanded Cr lattice. The lattice will therefore shrink
to the NM phase atrWS = rm with no moment and with a volume decrease, which was
found in section 3.1 to be 2.1%. However if we allow for the volume expansion due to zero-
point vibration and thermal expansion of 0.9% (lattice parameter strain'300◦ × average
thermal expansion coefficient 10−5 per degree= 0.3% [1]), then the Cr relaxes atTN by
only 2.1–0.9= 1.2%.

(3) Sections 1 and 3.1 show that Cr has two minima of energy, the NM minimum at
rWS = 2.645 au and the SDW minimum atrWS = 2.664 au with a small barrier between
them of magnitude tenths of a mRyd/atom. These two minima correspond closely to the
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two phases introduced by Weiss [23] to explain the Invar effect, i.e. a negative coefficient of
thermal expansion, which Cr shows at low temperatures [1]. Cr starts at 0 K in the larger-
volume lower-energy minimum, but as temperature increases the smaller-volume higher-
energy minimum is increasingly occupied, hence counteracts the usual thermal expansion
due to anharmonic vibration.

(4) A strong effect of pressure on the effectiveness of an SDW in lowering the energy
is shown in the sharp decrease ofTN with pressure found by McWhan and Rice [24].
This sharp decrease is not explained by the effect of pressure on the Fermi surface, which
changes little with pressure [25]. However the mechanism proposed here predicts that
pressure should strongly decrease the effectiveness of the SDW, sincem decreases rapidly
asrWS decreases.

At high pressures the mechanism proposed here would also predict thatTN vanishes
for a 1.2% decrease in volume, since the AF phase disappears below that volume. This
prediction is apparently contradicted by the measurements of McWhan and Rice, who find
that TN does not vanish even at 90 kbar of pressure, which they interpret as a volume
decrease of 5%. However they use a standard equation of state to convert the pressures
into volume changes. If Cr had an unusually large bulk modulus at low temperatures, the
actual volume change would be much smaller. Since the compressive side of the SDW
minimum—from rt up to rWS at the SDW minimum—is produced by the steeply rising
m values, it is plausible that SDW Cr has a large bulk modulus for compression at low
temperatures. Hence the volume decrease would be smaller than estimated, and plausibly
not large enough to eliminate the AF phase and the SDW at 90 kbar.

An additional argument that supports this explanation of the behaviour of Cr under high
pressure is as follows. If the bulk modulusB were to stay constant under pressurep, the
volume reduction1V would be just proportional top. Then TN would decreasemore
rapidly asp increases, sincem decreases more rapidly asrWS decreases towardrt . Hence
the observation thatTN decreasesless rapidly asp increases and the fact thatp has little
effect on the nesting of the Fermi surface [25] imply that1V is not decreasing linearly and
thatB is increasing, as suggested above.

(5) The feeble nature of the ordering in the AF phase of SDW Cr has been frequently
noted [1–3], but an explanation was not possible before introduction of the present
mechanism. The transition to the AF phase must be called feeble, sincem has values
less than 0.6 µB , whereasm rises to more than 5µB in the AF phase when the lattice
expansion is continued [9, 16]. This early cutoff of the phase transition has already been
explained in this section as forced by the rapidly rising strain energy given byEAF (rWS).

5. Conclusions

The development here shows that a careful treatment of the magnetic structure of bcc Cr
is valuable, a conclusion that might be expected since the AF ground state of SDW Cr
is a weak perturbation of an AF state of bcc Cr. The existence and many properties of
SDW Cr are successfully explained by the properties of AF bcc Cr, with its very small
energy differences from the NM phase and its great sensitivity to volume near the transition
volume, combined with the special sensitivity to SDW’s. Fawcett has concluded [26] that
‘The fundamental reason for this strong volume dependence [of the magnetic properties of
the Cr system] is not known, but it seems to have little connection with the nesting of the
Fermi surface’. This reason is now provided by the mechanism proposed here.

This success provides additional justification for the application of the pure KS equations
to magnetic phases of metals with the LSDA, but without corrections. This success also
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shows the value of the constrained moment procedure in locating and testing the stability
of magnetic phases. The accurate location of the AF band has not been found without this
procedure. For the difficult problem of tracing out the different phases at the second-order
transition in Cr it was also necessary to use a larger unit cell than the two-atom bcc cell.

Deriving the magnetic structure of Cr from first principles is a valuable advance in
the theory of Cr. Not only do the KS equations provide a well tested and well defined
description of ground-state properties, but, since no parameters are required, the theory
applies equally well in all situations. Thus the theory gives reliable results on the very
small length and energy scales that are involved in perturbing bcc Cr to become SDW Cr.

Finally we note again the disturbingly large discrepancy between the energy scale of
the magnetic phases found here and the 1992 calculation of Singh and Ashkenazi [12]. We
need to find the reason for the discrepancy, since the larger energy separations would make
the proposed mechanism for SDW Cr impossible and this discrepancy might appear in other
calculations. One possibility is the effect of the relativistic corrections used by SA, but not
in the present work.
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